A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
$5\hat i - \hat j$
$-5\hat i - \hat j$
$5\hat i + \hat j$
$-5\hat i + 9\hat j$
Two vectors having equal magnitudes of $x\, units$ acting at an angle of $45^o$ have resultant $\sqrt {\left( {2 + \sqrt 2 } \right)} $ $units$. The value of $x$ is
When vector $\overrightarrow{ A }=2 \hat{ i }+3 \hat{ j }+2 \hat{ k }$ is subtracted from vector $\vec{B}$, it gives a vector equal to $2 \hat{j}$. Then the magnitude of vector $\vec{B}$ will be:
A vector $\vec A $ is rotated by a small angle $\Delta \theta$ radian $( \Delta \theta << 1)$ to get a new vector $\vec B$ In that case $\left| {\vec B - \vec A} \right|$ is
A person moves $30\, m$ north and then $20\, m$ towards east and finally $30\sqrt 2 \,m$ in south-west direction. The displacement of the person from the origin will be
If the sum of two unit vectors is a unit vector, then magnitude of difference is